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randomephase screen in uniform motion 

E Jakeman and J G McWhirter 
Royal Radar Establishment, Malvern, Worcs, UK 
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Abstract. The scattering of radiation by a rigid deeprandom-phase screen in uniform linear 
motion is studied and formulae are derived for the spatial and temporal correlation 
functions of the scattered field and intensity in the Fraunhofer and Fresnel regions. A joint 
Gaussian distribution is used to represent the phase screen and the illuminating beam is 
assumed to have a curved wavefront and Gaussian intensity profile. It is shown that the 
coherence properties of the scattered radiation depend on an apparent area of illumination 
which is a function both of the actual width of the illuminating beam and of the slope 
distribution of the scattered wavefront. The dependence of the second intensity moment on 
distance from the screen is discussed and compared with that predicted by previous authors. 

1. Introduction 

A random-phase screen is a thin scattering layer which introduces randomly fluctuating 
path differences into an incident electromagnetic wave. The properties of radiation 
scattered by such a system have been investigated by many authors since the pioneering 
work of Booker et a1 (1950) and Ratcliffe (€956) because of their importance in 
connection with the scintillation of extra-terrestial radio sources caused by 
hegularities in the ionosphere or in the solar wind (for example Little and Love11 1950, 
Hewish et a1 1964). Significant theoretical contributions to the subject have been made 
bMercier (1962), Salpeter (1967), Bramley and Young (1967) and more recently by 
Jokipii (1970), Whale (1973, 1974) and by Taylor (1972) and Taylor and Infosino 
(1975). Useful reviews of some of the earlier work were given by Briggs (1966) and 
Singleton (1970). These authors investigated the problem of scattering of an incident 
Plane wave by an infinite one- or two-dimensional screen introducing Gaussian 
distributed, random-phase fluctuations, and examined the statistical and spatial coher- 
ence Properties of the scattered radiation as a function of distance from the screen. 

interesting features emerged from the analyses. For example, in the deep 
phW-screen limit when path differences are introduced which exceed about one-third 
Of the wavelength of the incident radiation, it was found that the variance of the 
scattered intensity (square of the envelope of the field) increased from zero near the 
sheen to a maximum in the region of focusing predicted by geometrical optics and then 
deneased with distance, finally saturating at a value of unity far from the scattering 
Plane. 

Much of the above mentioned work was motivated by the possibility of using 
measurements of radio-star scintillation to deduce properties of the earth’s ionosphere. 
‘Ore recently, a similar desire to determine the properties of a phase screen from 
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measurements Of fluctuations in scattered electromagnetic radiation has led to a 
theoretical investigation of a somewhat different scattering configuration. In 1963 
Deutsch and Keating showed that under certain conditions a thin (25 cLII1) layer o; 
nematic liquid crystal undergoing electrically driven hydrodynamic turbulence 
duced phase fluctuations into an incident optical frequency field. Subsequently it was 
shown (Jakeman and Raynes 1972, Jakeman and Pusey 1973b, Pusey and jakeman 
1975) that the system in fact approximated a deep random-phase Saeen when 
illuminated with radiation from a 6328 A He-Ne laser. Laser light scattering expi- 
ments on this type of system are typically carried out by measuring intensiQflumations 
in the Fraunhiifer region where they are Gaussian distributed (Corresponding the 
saturation region mentioned above where the variance is unity) and no information regarding the correlation length of the phase fluctuations. In order 
develop a technique to obtain this kind of information from Fraunhofer region 
observations, therefore, a theoretical investigation was made on the effect of reducing 
the illuminated area by focusing down the laser beam to a small spot on the scanerer, 
assumed to be a deep, Gaussian random-phase screen (Jakeman and h s e y  1973% 
Jakeman 1974, Jakeman and Pusey 1975). In such a situation the probability ditribu- 
tion of the scattered field is non-Gaussian and the statistical properties of the intensity 
fluctuations can be related to the parameters of an assumed model for the phase 
fluctuations. This configuration may be contrasted with the problem studied previously 
(e.g. Mercier 1962) in which the phase screen was assumed to be infinite in lateral extent 
with non-Gaussian fluctuations arising from focusing effects occurring in the Fresnel 
region with respect to the scattering plane. 

In addition to calculating the statistical and spatial coherence properties of light 
scattered by a restricted area of a deep random-phase screen, Jakeman and Pusey 
(1975) investigated its temporal coherence properties which do not seem to have 
received much attention from earlier workers in the field but which were of interest in 
the case of the liquid crystal system. It was pointed out, however, that although the 
analysis was valid for scattering from an intrinsically fluctuating phase screen, it could 
not be applied to translating 'rigid' systems such as, for example, a moving or S m n e d  
perfectly conducting rough surface. This type of scatterer may provide one of the mt 
important applications of phase screen theory, at least at optical frequencies. The 
problem of scattering from rough surfaces is of course a long standing one (see *Or 

example Beckmann and Spizzichino 1963 and references therein) but since the advent 
of the laser there has been renewed interest in the subject. Early work on the scanten% 
of coherent light from surfaces such as ground glass was mainly concerned with the 
fundamental properties of detected optical signals (for example, Martienssen and 
Spiller 1964, Arecchi 1965) but a good deal of effort has been devoted recentlyto 
application of the knowledge so gained to practical problems such as the meaSurement 
of translational and vibrational motion of solid surfaces (for a review, see Birch 1975) 
and surface roughness (Sprague 1972, Nagata et a1 1973, Fujii and Asakura 1974' 
George and Jain 1974, Parry 1974a, b, Pedersen 1974,1975, Taki 1975, Leger 
1975, Ohtsubo and Asakura 1975). Most theoretical calculations made inthis 
tion have been based on approximations valid in the Fraunhofer regon andassme that 
the incident wavefront and surface are planar. However, it has been known for a?' 
years that several commonly observed phenomena are due to curvature 
either due to divergence or convergence of the incident radiation, curvature Of the 

' den and 
illuminated surface or observation in the Fresnel region (for example Ng be 
Gordon 1962, Oliver 1963, Sporton 1969). Several papers have aPpeUed On 
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recently in which attempts have been made to quantify the various effects of 
wavefront curvature (Estes et a2 1971, Nagata and Umehara 1973, Takai 1974, 
Jdeman 1975) but calculations appear to have been confined, hitherto, to special 
limiting cases (for example when the scattered field is Gaussian distributed) and no 
attempt has been made to extend the theoretical analyses to predict intensity statistics 

coherence properties in non-Gaussian situations (arising either from focusing or 
resmctionson the illuminated area) when the results become sensitive to surface detail. 

In this paper, therefore, we extend the deep phase-screen calculations of Jakeman 
a d  hsey (1975) to include the effect of curvature (so that the results are valid in the 
Fresnel region) and to cope with the case of a uniformly moving rigid rough surface. 
Insofar as the approximations used are valid the work generalizes some of the deep 
phase-screen results of workers in the fields of radio astronomy and ionosphericphysics 
to include the effects of both uniform translation of the phase screen and of spatial 
limitation of the observed scattering region. 

The theoretical approach used in earlier papers is briefly reviewed in $ 2  and 
extended to include the effect of a uniform translation of the phase screen. Results for 
the first- and second-order coherence properties of the scattered radiation are pre- 
sented and some special cases considered. Section 3 is devoted to a discussion of the 
results and their interpretation, and comparisons are made with earlier work. The main 
conclusions are summarized in 9 4. 

2. Theory 

Consider the experimental set up shown in figure 1. A beam of monochromatic 
electromagnetic radiation with a Gaussian profile of width Wand radius of curvature cr 
hincident on a rigid phase screen of negligible thickness which is moving with velocity o 
perpendicular to the beam. The forward scattered radiation is detected by a square-law 
envelope detector whose axis makes an angle 8, with the direction of incidence. 

After passing through the phase screen the positive frequency part of the electric 
field may be written 

gC(r, 0; t )  =Eo exp(-iot) exp a - exp(i+(r; t ) )  exp(-r’/ W’) (1) 

where k = o/c is the wavenumber of the radiation, Q(r; t) is the randomly varying 
Psition-dependent phase shift caused by transmission through the moving screen and 
Eo is a constant. 

t ”  
I 

/ 
Incident beam 

Phase screen 

F i e  1. Scatteringgeometry. 
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where R = /RI /  and A: is the wavelength of the radiation. Then, assuming that o1 issmall 
SO that rl << R, it follows from the theory of Fresnel diffraction that 

r ' .  RI f 2  
R 2R 

Jr'-R,J=R --+- 
(3) 

and so 
iEo( 1 +COS e,) 

2AR exp[i(kR -or)] $+(RI ; t )  = 

cc 

X d2r'exp[ikd2-ikr'. rl/R+i+(r'; t )  - r f2 /W2]  (4) 

where 

.='(L+') 
2~ R 

Assuming that 4 is Gaussian distributed so that 

the space-time field correlation function may be written, after some manipulation, in 
the form 

m 

16h2R2 -m 
exp(iwr) exp(-T) 1 d't' d2F 

- lEOl2(i +COS e,)(i +COS e2) - 

xexp[$k(t'. U+t" .  V)]exp( - ( f f 2 ~ ~ 2 ) )  

X eXp(ikrct'. t") exp(-qp(t'+ U T ) )  (7) 

where the detection points have been chosen, for convenience, such that IRil=hIsR 
and we have defined 

1 (8 1 
R 

V= -(rl - r2). R U = - (rl + r2) 

In deriving equation (7) we have made use of the fact that for a 
translating with velocity U 

and SO the normalized phase correIatiOn function, assumed to be trans*ationdY 
invariant and stationary, is given by 

(w;  t)4(rff;  t+T))/g = ( + ( r ~ ;  f ) b ( r " - U T ;  t ) > / 2 = p ( r r - r f ' + u T )  

Paase 

t 9) 4(r ;  t + T ) = + ( r - U T ;  t )  

(10) 
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where 2 is the mean square phase deviation. Similarly the space-time intensity 
conelation function may be written in the form 

(I(RI; t)l(R2; f+T))  

+COS e,l2(i +COS e2)’ 
- exp ( - 2 3  16A4R4 

X eXp( - [ t” f frff2 + tn2( 1 4- k2K2 w“)]/ w’) 
x exd7[p( t f f  + tl”) + p ( ~ ‘ -  trff) + p ( t +  tf + try) + p(t’ - P‘ + t.r> 
- p (  f’ + t”‘+ try) - p(t’ - t’” + vi)]} 

I(R, t )  = 8+(R; t)8-(R; f). 

(1 1) 

(12) 
where 

For large 2, equation (7) may be evaluated using the method of steepest descent. In 
order to evaluate the integrak in equation (1 1)’ however, we introduce the approxima- 
tion 

exp[Zp(r)] = 1 +[exp!Z)- 11 exp(-2r2/t2) (13) 

6’ >> 1 (14) 

used in earlier work (e.g. Berry 1973, Jakeman 1974), assuming that 
- 

and that the phase correlation function p(r )  may be expanded about the origin in terms 
of a ‘cokelation length’ .$ in the form 

p(r)= 1-r2/ t2+.  . . * (15) 

ne use of (13) and further simplifications to evaluate the second-order correlation 
function (1 1) has been shown to be equivalent to taking a ‘facet’ model for the scattered 
wavefront (Jakeman and Pusey 1975) and strictly speaking the results obtained for this 
quantity are valid only for such scattering systems. However this restriction does not 
apply when many correlation areas of the scatterer contribute to the field (the Gaussian 
limit) nor does it apply to the first-order correlation function (7) which is evaluated 

~(‘’(RI, R,; T) 
(14) and (15) to give 

= (%‘(RI ; f )  8-(R2; t f T))/((I(Rl ; t))(l(R2; t)>)”’ 

where%h accordance with the deep phase-screen approximat?, terms Of order 
expf-4 have been negkcted and it is further assumed that t2/ W, is not much greater 
‘81 0% such that 
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It is convenient to express the above result in terms Of an apparent bem Gdtb w, 
defined by 

1 1 k2K2c2 +-. -=- 
w: w2 242 (18) 

Takai (1974) has recently attempted a calculation in this limit for V=O but does not 
Seem to have retained the second curvature dependent term in equation (18). 

In evaluating the intensity correlation function the approximation (1 3) is substituted 
into equation (1 1) and leads to a sum of sixteen terms each of which is a ratio of two 
factors and several of which yield contributions of order exp(-?) in the result andmay 
be neglected. Three major terms are retained in our model, the term 

exp(-$) exp{T[p(t”+trl’) +p( t” -  t”‘)+. . .I> 
in equation (1 1) being replaced by 

- 

It is interesting to note that if the surface is replaced by a finite number of scattering 
points ti imparting random phase values (6i which are uncorrelated so that 

if ti = tj p(ti - tj) = 1 
= 0. otherwise (20) 
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Evaluation of the integrals in equation ( 1  1) is outlined in the appendix. Simplifia- 
tion of the results occurs in the following special cases: 

(1) In the Gaussian limit t 2 / W : + 0 ,  when there is a large number of phase 
‘coherence areas’ within the apparent beam width, equation (A.8) factorizes (for 

Siegert (1 943)) to become 

g‘2’(Ri,R2; T ) = l + l g ( ’ ) ( R 1 , R ~ ;  7)12 (24) 
6’) given by equation (1  6 )  above. 

(2) Setting V and T = 0 in equation (A.8) yields the second-order statistic 

(3) When K = 0 we recover from (25) the result of Jakeman and Pusey (1975) 

(4) In the limit W +  00 equation (25) becomes 

3. bossion 

The stalktical properties embodied in the general results (A.8) and (A.9) are most 
understood in terms of the limiting behaviour of equations (24)-(27). We shall 

herefore restrict the discussion to consideration of these special cases, concentrating on 
features which have not been discussed in our previous publications (Jakeman 

19749 Jakeman and Pusey 1975). 
In the Gaussian limit given by equations (24) and (16) the intensity correlation 

bears a superficial resemblance to a formula obtained earlier by Jakeman 
(1975). AS a function of the detector separation the correlation attains a maximum 
when V=-2~1)7 and thus the speckle pattern produced by the phase screen is seen to 
have a Cumature-dependent velocity proportional to that of the screen itself. AS a 
‘ C h  of the delay time 7, g(’) is a shifted Gaussian function of width 

T~ = W 2 / v W ,  (1 + k 2 K Z  w)1’2 
at the delay time 
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previously for scattering by an assembly of uniformly moving point scatterers ( J ~ ~ ~  

1975). However, the speckle fluctuation time, equation (28), is longer than that 
obtained for the latter system by a factor W/ W,. This is because (from equations(lq 
and (1 8)) W, differs significantly from W only when ~ K W '  >> 1 and T~ is then the transit 
time of a single speckle across the detector (Jakeman 1974). According to equations 
(24) and (16) the speckle size (obtained by setting T = 0) is of the order of 2 ~ / k w ,  ad 
s ine  W, < W this is larger than that for point scatterers (2RIkW) giving an inhw 
fluctuation time for the same overall pattern velocity. 

It should be noted that as a result of the definition of equation (18) of w, we have 
the somewhat unusual situation in which the statistics of the scattered field are close to 
Gaussian but its spatial coherence properties are a function of the structure of the 
scatterer. In practical terms this situation will occur, for example, when the charade& 
tic tilt of an element of a scattering surface is small compared to the angie of view 
defined by the radius of the actual illuminated region at the detection point. ne 
relatively simple form of equation (18) is due to the choice of Gaussian functions for 
both the intensity profile of the incident radiation and the statistics of the phase 
fluctuations. The K dependent term arises since radiation falling onto the screen at a 
distance r from the axis of the beam must be scattered through an angle 2 k ~ r  to gives 
return and the probabiIity of slope m in the phase surface may be shown to take the 
Gaussian form 

p(m)=-exp t2 
4 r 4  

In the limit of large W, W, -(2p/k2~2(2)1'2 which is, rough!y speaking, the radiusof 
an area over which the scatterer is capable of giving significant specular returnsintothe 
receiving direction. 

The concept of an effective illuminated area derives further support from the form 
of the normalized mean square-intensities (equations (26) and (27)). Because of the 
restriction, equation (14), on 42, significant deviations from Gaussian statistics 
occur even 'when the illuminated region contains many phase coherence ares, i.e. 
tz/ W2<< 1.  In this limit equation (26) reduces, in the forward direction, to 

. . , ,. 

On the other hand,'sufficientlyfar from an infinite deep random-phase screen 
nated by plane waves, the second moment of the intensity is given by the smallcmaNe 
limit kKt2<< 1 of equation (27) 

w and W, thus clearly play analogous roles in these two limiting situations, 
Equation (27) characterizes the situation usually studied by workers in the 

Of 
jnfmlte 

radio-astronomy and ionospheric physics, i.e. plane waves incident on an 
Gaussian random-phase screen, It is, of course, valid only for large p7 but this 'just to 
the case in which it has been found difficult, even using nu"&il tecb$qns3. 
evaluate the right hand side of equation (1 1) and hence obtain the second whch 
" .x t .  It is interesting, therefore, to compare the result, equation (2'1, nusfiP 
based on the approximations of equations (13) and (22), with earlier?.!@ 
2 compares the second moment given by equation (27) when 42s10 '* 
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q d e n t  curve obtained numerically by Bramley and Young (lQ67). Agreement is 
sw&ng& good over the range of values of x = 2/k~(’ for which equation (27) is 

1 
0 1  1 10 100 

L z / k g 2  

Fwe 2. Normalized variance of intensity fluctuations as a function of distance from 
the phase s a e e n f o r p =  10. (A) Numerically computed result (Bramleyand Young 1967). 
(B) Behaviour predicted by equation (27). 

plotted. For small values of this quantity, however, the solution exhibits unphysical 
oscillations presumably due to the breakdown of the approximations of equations (13) 
and(22). Earlier work (Jakeman and Pusey 1975) has shown that an analysis based on 
such approximations is equivalent to a model in which the illuminated area is divided 
into N- W 2 / t 2  specularly reflecting discs of area r t 2 / 2  whose tilts are Gaussian 
distributed. Increased fluctuations are then expected (i) as N is reduced and (ii) as the 
form factor; for scattering from individual discs become more directional. In the 
present situation the first mentioned behaviour is evident in the small curvature limit of 
equation (32) ( N -  W:/S2) which is valid in the Fraunhofer region with respect to the 
phase coherence area or single disc. Increased directionality of the radiation pattern 
mttered by individual discs becomes the dominant source of deviation from Gaussian 
atistics at larger curvatures, however, and the full formula of equation (27) must then 
be used to take proper account of Fresnel region effects with respect to these 
sub-regions of the effective illuminated area. As might be expected from the disc 
analogy the formula yields a peak near 

x -  1/77 (33) 

@responding to the ‘focus’ of such a scatterer. This result may be contrasted with the 
peddons of other workers based on a geometrical optics approach. For a deep 

phase screen this suggests (Salpeter 1967, Bramley and Young 1967) that 
should occur close to 

x = 1/ (7 )1 ’2  (34) 

Rhich Kmesponds, incidentally, to W ; - t 2  or N =  1. For p= 10 there is little 
‘erence between equations (33) and (34) so that it is not too surprising that there is 
g o o d a g ” n t  in figure 2 between the peak positions. However, for large 2 equation 
(’)predicts that the peak should occur at progressively Iqger values of the curvature 
(e’g5c10ser to the screen) and clearly, in this regime, the model of specularly reflecting 
k s  which is implied by our approximations departs from the situation considered by 

authors in which the phase correlation function is assumed to be Gaussian. 
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It &ould be noted that non-Gaussian effects in the Fraunhofer region (due to 
la ta t ion of the illuminated area) will also be sensitive to the properties of the 
‘individual scattering centres’ contributing to the far field. These Properties are 
embodied in the higher order terms of the expansion equation (15) for the phase 
anelation function which are attributed very small coefficients by the ‘faet’ approxi. 
maion equation (13). The results of a full investigation of this problem will be 
presented in a future publication. 

General formulae have been derived for the first- and second-order statistid and 
coherence properties of radiation scattered by a moving rigid deep random-phase 
screen illuminated by spherical waves of Gaussian intensity profile. The results ae 
found to depend upon an apparent beam width W, which incorporates both thewid& 
of the incident beam and also that of the probability distribution of slopes ofelementsof 
the phase surface relative to the viewing direction. When this apparent width is luge 
compared to the phase correlation length it is possible to realise a situation in which the 
statistics of the scattered radiation are nearly Gaussian but the speckle size andintrinsic 
fluctuation time are determined by W, and therefore depend strongly on the structure 
of the scattering phase screen. The overall motion of the speckle pattern is found to be 
the same as that predicted previously for point scatterers in these circumstances. 

An analytic expression is found for the second moment of the intensity fluctuation 
distribution as a function of distance from the screen. For a mean square phase 
deviation of 10 this reproduces the behaviour calculated numerically by Bramlepd 
Young (1967). However, the behaviour close to the screen for very large 4’ is 
qualitatively different from that predicted by earlier workers in the field due to the 
different model which is embodied in the approximations made in the present approach. 

Appendix 

The integral in equation (1 1) may be written as the sum of three terms TI, T2 and T3 
corresponding to the three terms in the numerator of equation (19). Each of 
Chssian terms TI and T2 is evaluated in the same way as the quantity 1, in theapP* 
of Jakeman and Pusey (1 975) by introducing, respectively, the delta function aPProxl- 
mations - 
e x P [ - ~ 2 ( ~ + ~ ) ]  242 1 exp[it”’ . (2k~t‘-  kV)] 
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with the regions of contribution indicated in equation (23) of this paper. in ne determination of TI and T2 is thus reduced to evaluating respectively the intends 

ne non-Gaussian term T3 is similar to the quantity I2 of Jakeman and h s e y  (1975) 
and by transforming to sum and difference coordinates reduces to the evaluation of the 
quantity Ir" where I is 

and r* denotes the complex conjugate. 

integration into two sub-regions from 0-8 and 8 4 ,  where 8 is given by 
The integrals (A.3), (A.4) and (AS) are evaluated by splitting the region of 

so that 
binomially and the terms of the series evaluated using the following result 

[ drrexp(-ar2)Jo(br) 

when ?>>1. In each region the denominator may be expanded 

e 

In these equations Jt denotes the tth order Bessel function of the first kind but an 
Wivalent result is easily derived in terms of the modified Bessel function I,. Clearly the 
bt expression on the right hand side of (A.7) converges most rapidly for small valuesof 
&while the second converges most rapidly for large values. Finally, taking into account 
the inequalities in equations (14) and (17) and assuming that the translation and 
detector separation are both sufficiently small to ensure that correlation is not damped 

bY the Gaussian apparent beam width factor, the resulting series may be simplified 
and the intensity conelation function written in the normalized form. 

@'(PI, R2 ; 7) 
= ( I ( R ~ ;  ~ ) I ( R ~ ;  t +  T ) ) / ( I ( R ~ ;  t))(@h; t>> 
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(AA) 
where 
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